If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+160x+384=0
a = 16; b = 160; c = +384;
Δ = b2-4ac
Δ = 1602-4·16·384
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-32}{2*16}=\frac{-192}{32} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+32}{2*16}=\frac{-128}{32} =-4 $
| -26=x+6 | | 9+4x-7=x+16+5× | | (x-9)(5+2)=0 | | 5x-20=x/3+8 | | 7(u+5)+2u=-8 | | 15q=10q+450 | | 4+4x=5x | | 4x+50=1x+80 | | 4(x-5)+1=2x-3 | | -1/7w=1/4 | | 4(x+5)=2(x+30) | | 3x-5(x-4)=-7+3x-13 | | 2(2x-3)=61x | | -4(w-2)=-7w+14 | | 13s+14=26 | | 1.67x^2+x-1.5=0 | | -3x+7=-9x=49 | | -28=-7w+3(w-4) | | 3=5x+13+5=53 | | 9(k+4)=36 | | 77+8=4x+57 | | -15.9=(w/8)-3.1 | | -15.9=w/8-3.1 | | 4x3-12x2=9x-27 | | x/4-3x/7=9 | | 7x+3=4x+25 | | 42=7(p–13) | | 3x+2x-4=7x-3x+8 | | 9x^2+12x=4 | | 5x+18=3x+8 | | 3-5(2x-2)=-8(x+1) | | 14-y=169 |